posted 11 Oct 2023

Surface Area on a Sphere


§ Differential Mapping

Problem

Consider a surface SS defined by the bivariate function

z=f(x,y),(x,y)DE2.z = f(x, y), (x, y) \in D \subset \mathbb{E}^2.

Find the surface area of S.S.

Let X(u,v)u,v,f(x,y)X(u, v) \triangleq \langle u, v, f(x, y)\rangle denote the differentiable mapping of the surface S,S, and its partial derivatives w.r.t. uu and vv be

Xu=1,0,fu(u,v)Xv=1,0,fv(u,v).X_u = \langle 1, 0, f_u(u, v)\rangle\\ X_v = \langle 1, 0, f_v(u, v)\rangle.

The first fundamental form of SS is given by

ds2=Edu2+2Fdudv+Gdv2E=XuXu=1+fu2F=XuXv=fufvG=XvXv=1+fv2\begin{align*} \mathrm{d}s^2 &= E\mathrm{d}u^2 + 2F\mathrm{d}u\mathrm{d}v + G\mathrm{d}v^2\\ E &= X_u \cdot X_u = 1 + f^2_u\\ F &= X_u \cdot X_v = f_u \cdot f_v\\ G &= X_v \cdot X_v = 1 + f^2_v \end{align*}

Finally, the surface area of SS is given by

area(S)=DEGF2 dudv=D(1+fu2)(1+fv2)(fufv)2 dudv\begin{align*} \mathrm{area}(S) &= \int_D\sqrt{EG-F^2}\ \mathrm{d}u\,\mathrm{d}v\\ &= \int_D\sqrt{(1 + f^2_u)(1+f^2_v)(f_uf_v)^2}\ \mathrm{d}u\,\mathrm{d}v \end{align*}

§ Problem

Consider the unit sphere S:x2+y2+z21=0S : x^2 + y^2 + z^2 - 1 = 0.

Suppose the cylinder C:x2+y2+1=0C: x^2 + y^2 +-1 = 0 with z[1,1]z \in [-1, 1] envelops the sphere.

Then, slice the sphere SS and cylinder CC using two horizontal planes z=z1z = z_1 and z=z2z = z_2, z1<z2,z_1 < z_2, to get strips S^\hat{S} and C^\hat{C} between the two planes.

What can we say about area(S^)\mathrm{area}(\hat{S}) and area(C^)\mathrm{area}(\hat{C})?

§ Area of Cylindrical Slices

Assume, wlog. z2>z1z_2 > z_1. The area of C^\hat{C} is the same as an open-ended cylinder with height z2z1z_2 - z_1, which is the same as the integral

area(C^)=z1z22πdt=2π(z2z1).\mathrm{area}(\hat{C}) = \int_{z_1}^{z_2} 2\pi \mathrm{d}t = 2\pi(z_2 - z_1).

§ Area of Spherical Slices

To find the area of SS, we can express it in terms of a parametric equation S(θ,ϕ)=(cosθsinϕ,sinθsinϕ,cosϕ)S(\theta, \phi) = (\cos\theta \sin\phi, \sin \theta\sin\phi, \cos\phi) where θ[0,2π)\theta \in [0, 2\pi) is the azimuthal angle and ϕ[0,π]\phi \in [0, \pi] is the polar angle.

The differential arclength is given by

ds=Sθdθ+Sϕdϕ,ds2=(Sθdθ+Sϕdϕ)(Sθdθ+Sϕdϕ)=(SθSθ)dθ2+2(SθSϕ)dθdϕ+(SϕSϕ)dϕ2=sin2ϕdθ2+0dθdϕ+1dϕ2\begin{align*} \mathrm{d}s &= \|S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi\|,\\ \mathrm{d}s^2 &= (S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi) \cdot (S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi)\\ &= (S_\theta \cdot S_\theta)\,\mathrm{d}\theta^2 + 2(S_\theta \cdot S_\phi)\,\mathrm{d}\theta\,\mathrm{d}\phi + (S_\phi \cdot S_\phi)\,\mathrm{d}\phi^2\\ &= \sin^2\phi\,\mathrm{d}\theta^2 + 0\,\mathrm{d}\theta\,\mathrm{d}\phi + 1\,\mathrm{d}\phi^2 \end{align*}

yielding the first fundamental form of SS,

E=(SθSθ)=sin2ϕ,F=0,G=1.E = (S_\theta \cdot S_\theta) = \sin^2\phi,\quad F = 0,\quad G = 1.

The area of S^\hat{S} is given by

area(S^)=D^Sθ×Sϕdθdϕ=D^EGF2dθdϕ=D^sinϕ dθdϕ.\begin{align*} \mathrm{area}(\hat{S}) &= \int_{\hat{D}} \|S_\theta \times S_\phi\|\mathrm{d}\theta \,\mathrm{d}\phi\\ &= \int_{\hat{D}} \sqrt{EG - F^2}\mathrm{d}\theta \,\mathrm{d}\phi\\ &= \int_{\hat{D}} \sin\phi\ \mathrm{d}\theta \,\mathrm{d}\phi. \end{align*}

§ Finding the Domain

We found a general expression for S^\hat{S}, however, to get the area we must find D^\hat{D}. As θ\theta is the azimuthal angle within the xyxy-plane, it is independent of zz and unaffected by the cutting planes z1z_1 and z2z_2.

Then, we want to limit the polar angle ϕ\phi such that z=cosϕ[z1,z2]z = \cos\phi \in [z_1, z_2]; this is given by ϕ[cos1(z2),cos1(z1)]\phi \in [\cos^{-1}(z_2), \cos^{-1}(z_1)].

Note that if we flip our assumption such that 1z1<z21-1 \leq z_1 < z_2 \leq 1, then cos1(z2)<cos1(z1)\cos^{-1}(z_2) < \cos^{-1}(z_1).

Finally, we evaluate the area(S^)\mathrm{area}(\hat{S}) integral over D^\hat{D},

(θ,ϕ)D^sinϕ dθdϕ=cos1z2cos1z102πsinϕ dθdϕ=(cos1z2cos1z1sinϕ dϕ)(02π dϕ)=2π[cosϕ]ϕ=cos1z1cos1z2=2π(z2z1).\begin{align*} \int_{(\theta, \phi) \in \hat{D}} \sin\phi\ \mathrm{d}\theta\,\mathrm{d}\phi &= \int_{\cos^{-1}z_2}^{\cos^{-1}z_1}\int_{0}^{2\pi}\sin\phi\ \mathrm{d}\theta\,\mathrm{d}\phi\\ &= \left(\int_{\cos^{-1}z_2}^{\cos^{-1}z_1}\sin\phi\ \mathrm{d}\phi\right)\left(\int_{0}^{2\pi}\ \mathrm{d}\phi\right)\\ &= 2\pi \left[\cos\phi\right]_{\phi=\cos^{-1}z_1}^{\cos^{-1}z_2}\\ &= 2\pi (z_2 - z_1). \end{align*}

Therefore, the strips S^\hat{S} and C^\hat{C} have equal area.