Problem
Consider the unit sphere S : x 2 + y 2 + z 2 − 1 = 0 S : x^2 + y^2 + z^2 - 1 = 0 S : x 2 + y 2 + z 2 − 1 = 0 .
Suppose the cylinder C : x 2 + y 2 + − 1 = 0 C: x^2 + y^2 +-1 = 0 C : x 2 + y 2 + − 1 = 0 with z ∈ [ − 1 , 1 ] z \in [-1, 1] z ∈ [ − 1 , 1 ] envelops the sphere.
Then, slice the sphere S S S and cylinder C C C using two horizontal planes z = z 1 z = z_1 z = z 1 and z = z 2 z = z_2 z = z 2 , z 1 < z 2 , z_1 < z_2, z 1 < z 2 , to get strips S ^ \hat{S} S ^ and C ^ \hat{C} C ^ between the two planes.
What can we say about a r e a ( S ^ ) \mathrm{area}(\hat{S}) area ( S ^ ) and a r e a ( C ^ ) \mathrm{area}(\hat{C}) area ( C ^ ) ?
Area of Cylindrical Slices
Assume, wlog. z 2 > z 1 z_2 > z_1 z 2 > z 1 . The area of C ^ \hat{C} C ^ is the same as an open-ended cylinder with height z 2 − z 1 z_2 - z_1 z 2 − z 1 , which is the same as the integral
a r e a ( C ^ ) = ∫ z 1 z 2 2 π d t = 2 π ( z 2 − z 1 ) . \mathrm{area}(\hat{C}) = \int_{z_1}^{z_2} 2\pi \mathrm{d}t = 2\pi(z_2 - z_1).
area ( C ^ ) = ∫ z 1 z 2 2 π d t = 2 π ( z 2 − z 1 ) .
Area of Spherical Slices
To find the area of S S S , we can express it in terms of a parametric equation S ( θ , ϕ ) = ( cos θ sin ϕ , sin θ sin ϕ , cos ϕ ) S(\theta, \phi) = (\cos\theta \sin\phi, \sin \theta\sin\phi, \cos\phi) S ( θ , ϕ ) = ( cos θ sin ϕ , sin θ sin ϕ , cos ϕ ) where θ ∈ [ 0 , 2 π ) \theta \in [0, 2\pi) θ ∈ [ 0 , 2 π ) is the azimuthal angle and ϕ ∈ [ 0 , π ] \phi \in [0, \pi] ϕ ∈ [ 0 , π ] is the polar angle.
The differential arclength is given by
d s = ∥ S θ d θ + S ϕ d ϕ ∥ , d s 2 = ( S θ d θ + S ϕ d ϕ ) ⋅ ( S θ d θ + S ϕ d ϕ ) = ( S θ ⋅ S θ ) d θ 2 + 2 ( S θ ⋅ S ϕ ) d θ d ϕ + ( S ϕ ⋅ S ϕ ) d ϕ 2 = sin 2 ϕ d θ 2 + 0 d θ d ϕ + 1 d ϕ 2 \begin{align*}
\mathrm{d}s &= \|S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi\|,\\
\mathrm{d}s^2 &= (S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi) \cdot (S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi)\\
&= (S_\theta \cdot S_\theta)\,\mathrm{d}\theta^2 + 2(S_\theta \cdot S_\phi)\,\mathrm{d}\theta\,\mathrm{d}\phi + (S_\phi \cdot S_\phi)\,\mathrm{d}\phi^2\\
&= \sin^2\phi\,\mathrm{d}\theta^2 + 0\,\mathrm{d}\theta\,\mathrm{d}\phi + 1\,\mathrm{d}\phi^2
\end{align*}
d s d s 2 = ∥ S θ d θ + S ϕ d ϕ ∥ , = ( S θ d θ + S ϕ d ϕ ) ⋅ ( S θ d θ + S ϕ d ϕ ) = ( S θ ⋅ S θ ) d θ 2 + 2 ( S θ ⋅ S ϕ ) d θ d ϕ + ( S ϕ ⋅ S ϕ ) d ϕ 2 = sin 2 ϕ d θ 2 + 0 d θ d ϕ + 1 d ϕ 2
yielding the first fundamental form of S S S ,
E = ( S θ ⋅ S θ ) = sin 2 ϕ , F = 0 , G = 1. E = (S_\theta \cdot S_\theta) = \sin^2\phi,\quad F = 0,\quad G = 1.
E = ( S θ ⋅ S θ ) = sin 2 ϕ , F = 0 , G = 1.
The area of S ^ \hat{S} S ^ is given by
a r e a ( S ^ ) = ∫ D ^ ∥ S θ × S ϕ ∥ d θ d ϕ = ∫ D ^ E G − F 2 d θ d ϕ = ∫ D ^ sin ϕ d θ d ϕ . \begin{align*}
\mathrm{area}(\hat{S}) &= \int_{\hat{D}} \|S_\theta \times S_\phi\|\mathrm{d}\theta \,\mathrm{d}\phi\\
&= \int_{\hat{D}} \sqrt{EG - F^2}\mathrm{d}\theta \,\mathrm{d}\phi\\
&= \int_{\hat{D}} \sin\phi\ \mathrm{d}\theta \,\mathrm{d}\phi.
\end{align*}
area ( S ^ ) = ∫ D ^ ∥ S θ × S ϕ ∥ d θ d ϕ = ∫ D ^ EG − F 2 d θ d ϕ = ∫ D ^ sin ϕ d θ d ϕ .
Finding the Domain
We found a general expression for S ^ \hat{S} S ^ , however, to get the area we must find D ^ \hat{D} D ^ .
As θ \theta θ is the azimuthal angle within the x y xy x y -plane, it is independent of z z z and unaffected by the cutting planes z 1 z_1 z 1 and z 2 z_2 z 2 .
Then, we want to limit the polar angle ϕ \phi ϕ such that z = cos ϕ ∈ [ z 1 , z 2 ] z = \cos\phi \in [z_1, z_2] z = cos ϕ ∈ [ z 1 , z 2 ] ; this is given by ϕ ∈ [ cos − 1 ( z 2 ) , cos − 1 ( z 1 ) ] \phi \in [\cos^{-1}(z_2), \cos^{-1}(z_1)] ϕ ∈ [ cos − 1 ( z 2 ) , cos − 1 ( z 1 )] .
Note that if we flip our assumption such that − 1 ≤ z 1 < z 2 ≤ 1 -1 \leq z_1 < z_2 \leq 1 − 1 ≤ z 1 < z 2 ≤ 1 , then cos − 1 ( z 2 ) < cos − 1 ( z 1 ) \cos^{-1}(z_2) < \cos^{-1}(z_1) cos − 1 ( z 2 ) < cos − 1 ( z 1 ) .
Finally, we evaluate the a r e a ( S ^ ) \mathrm{area}(\hat{S}) area ( S ^ ) integral over D ^ \hat{D} D ^ ,
∫ ( θ , ϕ ) ∈ D ^ sin ϕ d θ d ϕ = ∫ cos − 1 z 2 cos − 1 z 1 ∫ 0 2 π sin ϕ d θ d ϕ = ( ∫ cos − 1 z 2 cos − 1 z 1 sin ϕ d ϕ ) ( ∫ 0 2 π d ϕ ) = 2 π [ cos ϕ ] ϕ = cos − 1 z 1 cos − 1 z 2 = 2 π ( z 2 − z 1 ) . \begin{align*}
\int_{(\theta, \phi) \in \hat{D}} \sin\phi\ \mathrm{d}\theta\,\mathrm{d}\phi &= \int_{\cos^{-1}z_2}^{\cos^{-1}z_1}\int_{0}^{2\pi}\sin\phi\ \mathrm{d}\theta\,\mathrm{d}\phi\\
&= \left(\int_{\cos^{-1}z_2}^{\cos^{-1}z_1}\sin\phi\ \mathrm{d}\phi\right)\left(\int_{0}^{2\pi}\ \mathrm{d}\phi\right)\\
&= 2\pi \left[\cos\phi\right]_{\phi=\cos^{-1}z_1}^{\cos^{-1}z_2}\\
&= 2\pi (z_2 - z_1).
\end{align*}
∫ ( θ , ϕ ) ∈ D ^ sin ϕ d θ d ϕ = ∫ c o s − 1 z 2 c o s − 1 z 1 ∫ 0 2 π sin ϕ d θ d ϕ = ( ∫ c o s − 1 z 2 c o s − 1 z 1 sin ϕ d ϕ ) ( ∫ 0 2 π d ϕ ) = 2 π [ cos ϕ ] ϕ = c o s − 1 z 1 c o s − 1 z 2 = 2 π ( z 2 − z 1 ) .
Therefore, the strips S ^ \hat{S} S ^ and C ^ \hat{C} C ^ have equal area.