Surface Area on a Sphere

11 Oct 2023


§ Problem

Consider the unit sphere S:x2+y2+z21=0S : x^2 + y^2 + z^2 - 1 = 0.

Suppose the cylinder C:x2+y2+1=0C: x^2 + y^2 +-1 = 0 with z[1,1]z \in [-1, 1] envelops the sphere.

Then, slice the sphere SS and cylinder CC using two horizontal planes z=z1z = z_1 and z=z2z = z_2, z1<z2,z_1 < z_2, to get strips S^\hat{S} and C^\hat{C} between the two planes.

What can we say about area(S^)\mathrm{area}(\hat{S}) and area(C^)\mathrm{area}(\hat{C})?

§ Area of Cylindrical Slices

Assume, wlog. z2>z1z_2 > z_1. The area of C^\hat{C} is the same as an open-ended cylinder with height z2z1z_2 - z_1, which is the same as the integral

area(C^)=z1z22πdt=2π(z2z1).\mathrm{area}(\hat{C}) = \int_{z_1}^{z_2} 2\pi \mathrm{d}t = 2\pi(z_2 - z_1).

§ Area of Spherical Slices

To find the area of SS, we can express it in terms of a parametric equation S(θ,ϕ)=(cosθsinϕ,sinθsinϕ,cosϕ)S(\theta, \phi) = (\cos\theta \sin\phi, \sin \theta\sin\phi, \cos\phi) where θ[0,2π)\theta \in [0, 2\pi) is the azimuthal angle and ϕ[0,π]\phi \in [0, \pi] is the polar angle.

The differential arclength is given by

ds=Sθdθ+Sϕdϕ,ds2=(Sθdθ+Sϕdϕ)(Sθdθ+Sϕdϕ)=(SθSθ)dθ2+2(SθSϕ)dθdϕ+(SϕSϕ)dϕ2=sin2ϕdθ2+0dθdϕ+1dϕ2\begin{align*} \mathrm{d}s &= \|S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi\|,\\ \mathrm{d}s^2 &= (S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi) \cdot (S_\theta\,\mathrm{d}\theta + S_\phi\,\mathrm{d}\phi)\\ &= (S_\theta \cdot S_\theta)\,\mathrm{d}\theta^2 + 2(S_\theta \cdot S_\phi)\,\mathrm{d}\theta\,\mathrm{d}\phi + (S_\phi \cdot S_\phi)\,\mathrm{d}\phi^2\\ &= \sin^2\phi\,\mathrm{d}\theta^2 + 0\,\mathrm{d}\theta\,\mathrm{d}\phi + 1\,\mathrm{d}\phi^2 \end{align*}

yielding the first fundamental form of SS,

E=(SθSθ)=sin2ϕ,F=0,G=1.E = (S_\theta \cdot S_\theta) = \sin^2\phi,\quad F = 0,\quad G = 1.

The area of S^\hat{S} is given by

area(S^)=D^Sθ×Sϕdθdϕ=D^EGF2dθdϕ=D^sinϕ dθdϕ.\begin{align*} \mathrm{area}(\hat{S}) &= \int_{\hat{D}} \|S_\theta \times S_\phi\|\mathrm{d}\theta \,\mathrm{d}\phi\\ &= \int_{\hat{D}} \sqrt{EG - F^2}\mathrm{d}\theta \,\mathrm{d}\phi\\ &= \int_{\hat{D}} \sin\phi\ \mathrm{d}\theta \,\mathrm{d}\phi. \end{align*}

§ Finding the Domain

We found a general expression for S^\hat{S}, however, to get the area we must find D^\hat{D}. As θ\theta is the azimuthal angle within the xyxy-plane, it is independent of zz and unaffected by the cutting planes z1z_1 and z2z_2.

Then, we want to limit the polar angle ϕ\phi such that z=cosϕ[z1,z2]z = \cos\phi \in [z_1, z_2]; this is given by ϕ[cos1(z2),cos1(z1)]\phi \in [\cos^{-1}(z_2), \cos^{-1}(z_1)].

Note that if we flip our assumption such that 1z1<z21-1 \leq z_1 < z_2 \leq 1, then cos1(z2)<cos1(z1)\cos^{-1}(z_2) < \cos^{-1}(z_1).

Finally, we evaluate the area(S^)\mathrm{area}(\hat{S}) integral over D^\hat{D},

(θ,ϕ)D^sinϕ dθdϕ=cos1z2cos1z102πsinϕ dθdϕ=(cos1z2cos1z1sinϕ dϕ)(02π dϕ)=2π[cosϕ]ϕ=cos1z1cos1z2=2π(z2z1).\begin{align*} \int_{(\theta, \phi) \in \hat{D}} \sin\phi\ \mathrm{d}\theta\,\mathrm{d}\phi &= \int_{\cos^{-1}z_2}^{\cos^{-1}z_1}\int_{0}^{2\pi}\sin\phi\ \mathrm{d}\theta\,\mathrm{d}\phi\\ &= \left(\int_{\cos^{-1}z_2}^{\cos^{-1}z_1}\sin\phi\ \mathrm{d}\phi\right)\left(\int_{0}^{2\pi}\ \mathrm{d}\phi\right)\\ &= 2\pi \left[\cos\phi\right]_{\phi=\cos^{-1}z_1}^{\cos^{-1}z_2}\\ &= 2\pi (z_2 - z_1). \end{align*}

Therefore, the strips S^\hat{S} and C^\hat{C} have equal area.