posted 3 Nov 2023

Euler's Theorem in Differential Geometry


Theorem

Consider the surface SS with parameterization X(u,v).X(u, v). The point X0=X(u0,v0)X_0 = X(u_0, v_0) has principle curvatures κ1,κ2\kappa_1, \kappa_2 with κ1κ2.\kappa_1 \neq \kappa_2.

Suppose that T1T_1 and T2T_2 are orthogonal unit tangent vectors in the directions associated with the principal curvatures κ1\kappa_1 and κ2,\kappa_2, respectively.

Show that the normal surface curvature κn\kappa_n of SS in an arbitrary tangent direction TT of the surface SS at X0X_0 denoted by T=cos(θ)T1+sin(θ)T2T = \cos(\theta)\,T_1 + \sin(\theta)\,T_2 is given by

κn=κ1cos2(θ)+κ2sin2(θ).\kappa_n = \kappa_1 \cos^2(\theta) + \kappa_2 \sin^2(\theta).

Let w1w_1 and w2w_2 be the preimages of T1T_1 and T2T_2, respectively, in the parametric domain. By definition, TT is a linear combination of the vectors T1T_1 and T2.T_2. Then, w1w_1 and w2w_2 span the parametric domain, so we are able to define the preimage ww of the vector TT as a linear combination of vectors w1w_1 and w2w_2 as such

T=cos(θ)T1+sin(θ)T2=cos(θ)Xu,Xvw1+sin(θ)Xu,Xvw2=Xu,Xv(w1cos(θ)+w2sin(θ))w.\begin{align*} T &= \cos(\theta)\,T_1 + \sin(\theta)\,T_2\\ &= \cos(\theta)\,\langle X_u, X_v\rangle w_1 + \sin(\theta)\langle X_u, X_v\rangle w_2\\ &= \langle X_u, X_v\rangle \underbrace{(w_1 \cos(\theta) + w_2 \sin(\theta))}_{w}. \end{align*}

Now we have TT in terms of w1w_1 and w2w_2, we can plug it into the formula the normal surface curvature.

κn(w)=III=edu2+2fdu2dv2+gdv2Edu2+2Fdu2dv2+Gdv2=wTHIIwwTHIw\begin{align*} \kappa_n(w) &= \frac{\mathrm{II}}{\mathrm{I}}\\ &= \frac{e\mathrm{d}u^2 + 2f\mathrm{d}u^2\mathrm{d}v^2+g\mathrm{d}v^2}{E\mathrm{d}u^2+2F\mathrm{d}u^2\mathrm{d}v^2+G\mathrm{d}v^2}\\ &= \frac{w^T H_{\mathrm{II}}w}{w^TH_{I}w} \end{align*}

where HIH_I and HIIH_{\mathrm{II}} are given by

HI=(EFFG),HII=(effg).H_I = \begin{pmatrix}E & F \\ F & G\end{pmatrix},\quad H_{\mathrm{II}} = \begin{pmatrix}e & f \\ f & g\end{pmatrix}.

Plugging in w=w1cos(θ)+w2sin(θ),w = w_1 \cos(\theta) + w_2 \sin(\theta),

κn(w)=(w1cosθ+w2sinθ)HII(w1cosθ+w2sinθ)(w1cosθ+w2sinθ)HI(w1cosθ+w2sinθ)=cos2(θ)w1HIIw1+2cos(θ)sin(θ)w1HIIw2+sin2(θ)w2HIIw2cos2(θ)w1HIw1+2cos(θ)sin(θ)w1HIw2+sin2(θ)w2HIw2.\begin{align*} \kappa_n(w) &= \frac{(w_1\cos\theta + w_2\sin\theta)^{\intercal}H_{\mathrm{II}}(w_1\cos\theta + w_2\sin\theta)}{(w_1\cos\theta + w_2\sin\theta)^{\intercal}H_{\mathrm{I}}(w_1\cos\theta + w_2\sin\theta)}\\ &= \frac{\cos^2(\theta)w_1^{\intercal} H_{\mathrm{II}}w_1 + 2\cos(\theta)\sin(\theta)w_1^{\intercal} H_{\mathrm{II}}w_2 + \sin^2(\theta)w_2^{\intercal} H_{\mathrm{II}}w_2}{\cos^2(\theta)w_1^{\intercal} H_{\mathrm{I}}w_1 + 2\cos(\theta)\sin(\theta)w_1^{\intercal} H_{\mathrm{I}}w_2 + \sin^2(\theta)w_2^{\intercal} H_{\mathrm{I}}w_2}. \end{align*}

Using some of the properties of T1T_1 and T2T_2, we can simplify the above expresion. First, T1T_1 and T2T_2 are unit vectors,

1=T1T1=w1Xu,XvXu,Xvw1=w1(XuXuXuXvXuXvXvXv)=w1HIw1.\begin{align*} 1 = T_1^{\intercal} \cdot T_1 &= w_1^{\intercal}\cdot\langle X_u^{\intercal}, X_v^{\intercal}\rangle\langle X_u, X_v\rangle^{\intercal} \cdot w_1\\ &= w_1^{\intercal} \begin{pmatrix}X_u^{\intercal}X_u & X_u^{\intercal}X_v \\ X_u^{\intercal}X_v & X_v^{\intercal}X_v\end{pmatrix}\\ &= w_1^{\intercal} H_{\mathrm{I}} w_1. \end{align*}

Doing the same for w2,w_2, we get that w2H1w2=1.w_2^{\intercal}H_1w_2 = 1.

Next, using the additional fact that T1T_1 and T2T_2 are orthogonal gives

0=T1T2=w1Xu,XvXu,Xvw2=w1HIw2.\begin{align*} 0 = T_1^{\intercal}\cdot T_2 &= w_1^{\intercal} \cdot \langle X_u^{\intercal}, X_v^{\intercal}\rangle\langle X_u, X_v\rangle^{\intercal} w_2\\ &= w_1^{\intercal} H_{\mathrm{I}} w_2. \end{align*}

These results allow us to simplify the denominator of κn(w),\kappa_n(w),

cos2(θ)w1HIw11+2cos(θ)sin(θ)w1HIw20+sin2(θ)w2HIw21= cos2θ+sin2θ= 1.\begin{align*} &\cos^2(\theta)\underbrace{\cancel{w_1^\intercal H_{\mathrm{I}} w_1}}_{1} + 2\cos(\theta)\sin(\theta)\underbrace{\cancel{w_1^{\intercal} H_{\mathrm{I}} w_2}}_{0} + \sin^2(\theta)\underbrace{\cancel{w_2^{\intercal}H_{\mathrm{I}}w_2}}_1\\ =&\ \cos^2\theta + \sin^2 \theta\\ =&\ 1. \end{align*}

Then, the curvature is expressed as

κn(w)=cos2(θ)(w1HIIw1)+2cos(θ)sin(θ)(w1HIIw2)+sin2(θ)(w2HIIw2).\kappa_n(w) = \cos^2(\theta)\left(w_1^{\intercal} H_{\mathrm{II}} w_1\right) + 2\cos(\theta)\sin(\theta)\left(w_1^{\intercal} H_{\mathrm{II}} w_2\right) + \sin^2(\theta)\left(w_2^{\intercal} H_{\mathrm{II}} w_2\right).

Inspecting w1HIIw1,w_1^{\intercal} H_{\mathrm{II}} w_1,

w1HIIw1=w1HIIw11=w1HIIw1w1HIw1=κn(w1)=κ1.\begin{align*} w_1^{\intercal} H_{\mathrm{II}} w_1 &= \frac{w_1^{\intercal} H_{\mathrm{II}} w_1}{1}\\ &= \frac{w_1^{\intercal} H_{\mathrm{II}} w_1}{w_1^{\intercal} H_{\mathrm{I}} w_1}\\ &= \kappa_n(w_1)\\ &= \kappa_1. \end{align*}

Using the same method, we have κ2=w2HIIw2.\kappa_2 = w_2^{\intercal} H_{\mathrm{II}} w_2. Now, we have that the curvature is given by

κn(w)=κ1cos2(θ)+2cos(θ)sin(θ)(w1HIIw2)+κ2sin2(θ).\kappa_n(w) = \kappa_1\cos^2(\theta) + 2\cos(\theta)\sin(\theta)\left(w_1^{\intercal} H_{\mathrm{II}} w_2\right) + \kappa_2\sin^2(\theta).

Because κ1\kappa_1 and κ2\kappa_2 are principal curvatures, we have that HIIw2=κ2HIw2H_{\mathrm{II}}w_2 = \kappa_2 H_I w_2 which yields the following expression

κn(w)=κ1cos2(θ)+2cos(θ)sin(θ)(κ2w1HIw2)+κ2sin2(θ).\kappa_n(w) = \kappa_1\cos^2(\theta) + 2\cos(\theta)\sin(\theta)\left(\kappa_2 w_1^{\intercal} H_{\mathrm{I}} w_2\right) + \kappa_2\sin^2(\theta).

We've previously shown that w1HIw2=0,w_1^{\intercal}H_I w_2 = 0, therefore cancelling the middle term in the above expression. Finally, the normal surface curvature is given by

κn(w)=κ1cos2(θ)+κ2sin2(θ).\kappa_n(w) = \kappa_1\cos^2(\theta) + \kappa_2\sin^2(\theta).