Let w 1 w_1 w 1 and w 2 w_2 w 2 be the preimages of T 1 T_1 T 1 and T 2 T_2 T 2 , respectively, in the parametric domain.
By definition, T T T is a linear combination of the vectors T 1 T_1 T 1 and T 2 . T_2. T 2 .
Then, w 1 w_1 w 1 and w 2 w_2 w 2 span the parametric domain, so we are able to define the preimage w w w of the vector T T T as a linear combination of vectors w 1 w_1 w 1 and w 2 w_2 w 2 as such
T = cos ( θ ) T 1 + sin ( θ ) T 2 = cos ( θ ) ⟨ X u , X v ⟩ w 1 + sin ( θ ) ⟨ X u , X v ⟩ w 2 = ⟨ X u , X v ⟩ ( w 1 cos ( θ ) + w 2 sin ( θ ) ) ⏟ w . \begin{align*}
T &= \cos(\theta)\,T_1 + \sin(\theta)\,T_2\\
&= \cos(\theta)\,\langle X_u, X_v\rangle w_1 + \sin(\theta)\langle X_u, X_v\rangle w_2\\
&= \langle X_u, X_v\rangle \underbrace{(w_1 \cos(\theta) + w_2 \sin(\theta))}_{w}.
\end{align*}
T = cos ( θ ) T 1 + sin ( θ ) T 2 = cos ( θ ) ⟨ X u , X v ⟩ w 1 + sin ( θ ) ⟨ X u , X v ⟩ w 2 = ⟨ X u , X v ⟩ w ( w 1 cos ( θ ) + w 2 sin ( θ )) .
Now we have T T T in terms of w 1 w_1 w 1 and w 2 w_2 w 2 , we can plug it into the formula the normal surface curvature.
κ n ( w ) = I I I = e d u 2 + 2 f d u 2 d v 2 + g d v 2 E d u 2 + 2 F d u 2 d v 2 + G d v 2 = w T H I I w w T H I w \begin{align*}
\kappa_n(w) &= \frac{\mathrm{II}}{\mathrm{I}}\\
&= \frac{e\mathrm{d}u^2 + 2f\mathrm{d}u^2\mathrm{d}v^2+g\mathrm{d}v^2}{E\mathrm{d}u^2+2F\mathrm{d}u^2\mathrm{d}v^2+G\mathrm{d}v^2}\\
&= \frac{w^T H_{\mathrm{II}}w}{w^TH_{I}w}
\end{align*}
κ n ( w ) = I II = E d u 2 + 2 F d u 2 d v 2 + G d v 2 e d u 2 + 2 f d u 2 d v 2 + g d v 2 = w T H I w w T H II w
where H I H_I H I and H I I H_{\mathrm{II}} H II are given by
H I = ( E F F G ) , H I I = ( e f f g ) . H_I = \begin{pmatrix}E & F \\ F & G\end{pmatrix},\quad H_{\mathrm{II}} = \begin{pmatrix}e & f \\ f & g\end{pmatrix}.
H I = ( E F F G ) , H II = ( e f f g ) .
Plugging in w = w 1 cos ( θ ) + w 2 sin ( θ ) , w = w_1 \cos(\theta) + w_2 \sin(\theta), w = w 1 cos ( θ ) + w 2 sin ( θ ) ,
κ n ( w ) = ( w 1 cos θ + w 2 sin θ ) ⊺ H I I ( w 1 cos θ + w 2 sin θ ) ( w 1 cos θ + w 2 sin θ ) ⊺ H I ( w 1 cos θ + w 2 sin θ ) = cos 2 ( θ ) w 1 ⊺ H I I w 1 + 2 cos ( θ ) sin ( θ ) w 1 ⊺ H I I w 2 + sin 2 ( θ ) w 2 ⊺ H I I w 2 cos 2 ( θ ) w 1 ⊺ H I w 1 + 2 cos ( θ ) sin ( θ ) w 1 ⊺ H I w 2 + sin 2 ( θ ) w 2 ⊺ H I w 2 . \begin{align*}
\kappa_n(w) &= \frac{(w_1\cos\theta + w_2\sin\theta)^{\intercal}H_{\mathrm{II}}(w_1\cos\theta + w_2\sin\theta)}{(w_1\cos\theta + w_2\sin\theta)^{\intercal}H_{\mathrm{I}}(w_1\cos\theta + w_2\sin\theta)}\\
&= \frac{\cos^2(\theta)w_1^{\intercal} H_{\mathrm{II}}w_1 + 2\cos(\theta)\sin(\theta)w_1^{\intercal} H_{\mathrm{II}}w_2 + \sin^2(\theta)w_2^{\intercal} H_{\mathrm{II}}w_2}{\cos^2(\theta)w_1^{\intercal} H_{\mathrm{I}}w_1 + 2\cos(\theta)\sin(\theta)w_1^{\intercal} H_{\mathrm{I}}w_2 + \sin^2(\theta)w_2^{\intercal} H_{\mathrm{I}}w_2}.
\end{align*}
κ n ( w ) = ( w 1 cos θ + w 2 sin θ ) ⊺ H I ( w 1 cos θ + w 2 sin θ ) ( w 1 cos θ + w 2 sin θ ) ⊺ H II ( w 1 cos θ + w 2 sin θ ) = cos 2 ( θ ) w 1 ⊺ H I w 1 + 2 cos ( θ ) sin ( θ ) w 1 ⊺ H I w 2 + sin 2 ( θ ) w 2 ⊺ H I w 2 cos 2 ( θ ) w 1 ⊺ H II w 1 + 2 cos ( θ ) sin ( θ ) w 1 ⊺ H II w 2 + sin 2 ( θ ) w 2 ⊺ H II w 2 .
Using some of the properties of T 1 T_1 T 1 and T 2 T_2 T 2 , we can simplify the above expresion. First, T 1 T_1 T 1 and T 2 T_2 T 2 are unit vectors,
1 = T 1 ⊺ ⋅ T 1 = w 1 ⊺ ⋅ ⟨ X u ⊺ , X v ⊺ ⟩ ⟨ X u , X v ⟩ ⊺ ⋅ w 1 = w 1 ⊺ ( X u ⊺ X u X u ⊺ X v X u ⊺ X v X v ⊺ X v ) = w 1 ⊺ H I w 1 . \begin{align*}
1 = T_1^{\intercal} \cdot T_1 &= w_1^{\intercal}\cdot\langle X_u^{\intercal}, X_v^{\intercal}\rangle\langle X_u, X_v\rangle^{\intercal} \cdot w_1\\
&= w_1^{\intercal} \begin{pmatrix}X_u^{\intercal}X_u & X_u^{\intercal}X_v \\ X_u^{\intercal}X_v & X_v^{\intercal}X_v\end{pmatrix}\\
&= w_1^{\intercal} H_{\mathrm{I}} w_1.
\end{align*}
1 = T 1 ⊺ ⋅ T 1 = w 1 ⊺ ⋅ ⟨ X u ⊺ , X v ⊺ ⟩ ⟨ X u , X v ⟩ ⊺ ⋅ w 1 = w 1 ⊺ ( X u ⊺ X u X u ⊺ X v X u ⊺ X v X v ⊺ X v ) = w 1 ⊺ H I w 1 .
Doing the same for w 2 , w_2, w 2 , we get that w 2 ⊺ H 1 w 2 = 1. w_2^{\intercal}H_1w_2 = 1. w 2 ⊺ H 1 w 2 = 1.
Next, using the additional fact that T 1 T_1 T 1 and T 2 T_2 T 2 are orthogonal gives
0 = T 1 ⊺ ⋅ T 2 = w 1 ⊺ ⋅ ⟨ X u ⊺ , X v ⊺ ⟩ ⟨ X u , X v ⟩ ⊺ w 2 = w 1 ⊺ H I w 2 . \begin{align*}
0 = T_1^{\intercal}\cdot T_2 &= w_1^{\intercal} \cdot \langle X_u^{\intercal}, X_v^{\intercal}\rangle\langle X_u, X_v\rangle^{\intercal} w_2\\
&= w_1^{\intercal} H_{\mathrm{I}} w_2.
\end{align*}
0 = T 1 ⊺ ⋅ T 2 = w 1 ⊺ ⋅ ⟨ X u ⊺ , X v ⊺ ⟩ ⟨ X u , X v ⟩ ⊺ w 2 = w 1 ⊺ H I w 2 .
These results allow us to simplify the denominator of κ n ( w ) , \kappa_n(w), κ n ( w ) ,
cos 2 ( θ ) w 1 ⊺ H I w 1 ⏟ 1 + 2 cos ( θ ) sin ( θ ) w 1 ⊺ H I w 2 ⏟ 0 + sin 2 ( θ ) w 2 ⊺ H I w 2 ⏟ 1 = cos 2 θ + sin 2 θ = 1. \begin{align*}
&\cos^2(\theta)\underbrace{\cancel{w_1^\intercal H_{\mathrm{I}} w_1}}_{1} + 2\cos(\theta)\sin(\theta)\underbrace{\cancel{w_1^{\intercal} H_{\mathrm{I}} w_2}}_{0} + \sin^2(\theta)\underbrace{\cancel{w_2^{\intercal}H_{\mathrm{I}}w_2}}_1\\
=&\ \cos^2\theta + \sin^2 \theta\\
=&\ 1.
\end{align*}
= = cos 2 ( θ ) 1 w 1 ⊺ H I w 1 + 2 cos ( θ ) sin ( θ ) 0 w 1 ⊺ H I w 2 + sin 2 ( θ ) 1 w 2 ⊺ H I w 2 cos 2 θ + sin 2 θ 1.
Then, the curvature is expressed as
κ n ( w ) = cos 2 ( θ ) ( w 1 ⊺ H I I w 1 ) + 2 cos ( θ ) sin ( θ ) ( w 1 ⊺ H I I w 2 ) + sin 2 ( θ ) ( w 2 ⊺ H I I w 2 ) . \kappa_n(w) = \cos^2(\theta)\left(w_1^{\intercal} H_{\mathrm{II}} w_1\right) + 2\cos(\theta)\sin(\theta)\left(w_1^{\intercal} H_{\mathrm{II}} w_2\right) + \sin^2(\theta)\left(w_2^{\intercal} H_{\mathrm{II}} w_2\right).
κ n ( w ) = cos 2 ( θ ) ( w 1 ⊺ H II w 1 ) + 2 cos ( θ ) sin ( θ ) ( w 1 ⊺ H II w 2 ) + sin 2 ( θ ) ( w 2 ⊺ H II w 2 ) .
Inspecting w 1 ⊺ H I I w 1 , w_1^{\intercal} H_{\mathrm{II}} w_1, w 1 ⊺ H II w 1 ,
w 1 ⊺ H I I w 1 = w 1 ⊺ H I I w 1 1 = w 1 ⊺ H I I w 1 w 1 ⊺ H I w 1 = κ n ( w 1 ) = κ 1 . \begin{align*}
w_1^{\intercal} H_{\mathrm{II}} w_1 &= \frac{w_1^{\intercal} H_{\mathrm{II}} w_1}{1}\\
&= \frac{w_1^{\intercal} H_{\mathrm{II}} w_1}{w_1^{\intercal} H_{\mathrm{I}} w_1}\\
&= \kappa_n(w_1)\\
&= \kappa_1.
\end{align*}
w 1 ⊺ H II w 1 = 1 w 1 ⊺ H II w 1 = w 1 ⊺ H I w 1 w 1 ⊺ H II w 1 = κ n ( w 1 ) = κ 1 .
Using the same method, we have κ 2 = w 2 ⊺ H I I w 2 . \kappa_2 = w_2^{\intercal} H_{\mathrm{II}} w_2. κ 2 = w 2 ⊺ H II w 2 .
Now, we have that the curvature is given by
κ n ( w ) = κ 1 cos 2 ( θ ) + 2 cos ( θ ) sin ( θ ) ( w 1 ⊺ H I I w 2 ) + κ 2 sin 2 ( θ ) . \kappa_n(w) = \kappa_1\cos^2(\theta) + 2\cos(\theta)\sin(\theta)\left(w_1^{\intercal} H_{\mathrm{II}} w_2\right) + \kappa_2\sin^2(\theta).
κ n ( w ) = κ 1 cos 2 ( θ ) + 2 cos ( θ ) sin ( θ ) ( w 1 ⊺ H II w 2 ) + κ 2 sin 2 ( θ ) .
Because κ 1 \kappa_1 κ 1 and κ 2 \kappa_2 κ 2 are principal curvatures, we have that H I I w 2 = κ 2 H I w 2 H_{\mathrm{II}}w_2 = \kappa_2 H_I w_2 H II w 2 = κ 2 H I w 2 which yields the following expression
κ n ( w ) = κ 1 cos 2 ( θ ) + 2 cos ( θ ) sin ( θ ) ( κ 2 w 1 ⊺ H I w 2 ) + κ 2 sin 2 ( θ ) . \kappa_n(w) = \kappa_1\cos^2(\theta) + 2\cos(\theta)\sin(\theta)\left(\kappa_2 w_1^{\intercal} H_{\mathrm{I}} w_2\right) + \kappa_2\sin^2(\theta).
κ n ( w ) = κ 1 cos 2 ( θ ) + 2 cos ( θ ) sin ( θ ) ( κ 2 w 1 ⊺ H I w 2 ) + κ 2 sin 2 ( θ ) .
We've previously shown that w 1 ⊺ H I w 2 = 0 , w_1^{\intercal}H_I w_2 = 0, w 1 ⊺ H I w 2 = 0 , therefore cancelling the middle term in the above expression.
Finally, the normal surface curvature is given by
κ n ( w ) = κ 1 cos 2 ( θ ) + κ 2 sin 2 ( θ ) . \kappa_n(w) = \kappa_1\cos^2(\theta) + \kappa_2\sin^2(\theta).
κ n ( w ) = κ 1 cos 2 ( θ ) + κ 2 sin 2 ( θ ) .