Elliptic Curves over Fp\mathbb{F}_p

17 Dec 2021


§ The Group Law on E(Fp\mathbb{F}_p)

An elliptic curve forms a group iff it has distinct roots; that is, the curve is non-singular. A curve defined by E:y2=x3+ax+bE: y^2 = x^3 + ax + b is non-singular if its determinant ΔE=4a3+27b2̸p0\Delta_E = 4a^3 + 27 b^2 \not\equiv_p 0.

Point Addition on E(Fp\mathbb{F}_p)

Given points P1,P2E(Fp)P_1, P_2 \in E(\mathbb{F}_p), P1+P2=P3P_1 + P_2 = P_3 is defined such that P3-P_3 is the third point of intersection between P1P2\overline{P_1P_2} and E(Fp)E(\mathbb{F}_p). If P1=P2P_1 = P_2 then P1P2\overline{P_1P_2} is defined to be the tangent line. If the line does not intersect a point on the curve, then P3P_3 is defined to be the point at infinity, O\mathcal{O}.

Properties:

  • P+O=O+P=PP + \mathcal{O} = \mathcal{O} + P = P.
  • P+P=O,P + -P = \mathcal{O}, where P=(x,y) -P = (x, -y).
  • P+(Q+R)=(P+Q)+RP + (Q + R) = (P + Q) + R.
  • P+Q=Q+PP + Q = Q + P.

Elliptic Curve Addition Theorem

Let E:y2=x3+ax+bE: y^2 = x^3 + ax + b be a non-singular elliptic curve and let P1(x1,y1),P2(x2,y2)EP_1(x_1, y_1), P_2(x_2, y_2) \in E.

  1. If P1=OP_1 = \mathcal{O} then P1+P2=P2P_1 + P_2 = P_2 (and vice versa).
  2. If x1=x2x_1 = x_2 and y1=y2y_1 = -y_2 then P1+P2=OP_1 + P_2 = \mathcal{O}.
  3. Otherwise,

    λp{y2y1x2x1if P1P23x12+a2y1if P1=P2\large\lambda\normalsize \equiv_p \begin{cases} \Large\frac{y_2 - y_1}{x_2 - x_1} & \text{if}\ P_1 \neq P_2\\\\ \Large\frac{3x_1^2 + a}{2y_1} & \text{if}\ P_1 = P_2 \end{cases}

    Then,

    P3(x3,y3):=P1+P2x3pλ2x1x2y3pλ(x1x3)y1\begin{align*} P_3(x_3, y_3) :&= P_1 + P_2\\ x_3 &\equiv_p \lambda^2 - x_1 - x_2\\ y_3 &\equiv_p \lambda(x_1 - x_3) - y_1 \end{align*}